Introduction to Complex Sample Surveys

Michael Laviolette, PhD, MPH
Senior Management Analyst
Office of Health Statistics and Data Management
mlaviolette@dhhs.state.nh.us
December 16, 2009
Why surveys?

• As public health professionals, we need health data for assessment and evaluation
• Primary ways to gather data are experiments and observational studies
• Experiments impose a treatment on individuals to observe responses; observational studies do not
• Experiments are used in clinical trials and give most reliable evidence for causation
• For ethical and practical reasons, experiments are not usually feasible in public health, so we use observational studies (surveys)
• CDC surveys include BRFSS, PRAMS, NHANES, YRBS, NHIS
Some important national surveys

- American Community Survey (ACS)
 - Ongoing Census survey on community characteristics
- Current Population Survey (CPS)
 - Census and Bureau of Labor Statistics
 - Data on labor force, including unemployment rate
- National Health and Nutrition Examination Survey (NHANES)
 - Includes interviews and physical exams
- National Health Interview Survey (NHIS)
 - Large-scale household interview survey
 - Personal interviews with 35,000-40,000 households per year
- Pregnancy Risk Assessment Monitoring System (PRAMS)
 - Maternal attitudes and experiences
- Youth Risk Behavior Surveillance System (YRBSS)
 - Youth and young adults; includes school-based component
- Behavioral Risk Factor Surveillance System (BRFSS): today’s focus
Behavioral Risk Factor Surveillance System (BRFSS)

- Ongoing state-based telephone survey to track health status and risk behaviors throughout U.S.
- Begun 1984 in 15 states; NH entered 1987
- Now in all 50 states, D.C., three territories
- Three parts
 - Core questions—common to all 54 areas
 - Optional modules on specific topics
 - NH uses diabetes and childhood asthma prevalence
 - State-added questions
 - NH asks town of residence and radon awareness
- NH version about 120 questions and 30 minutes
Survey terminology

- Usually we want information about some defined target population
 - e.g. adults resident in NH during 2009
- Population is a collection of elements (units on which data is collected)
 - Often persons, could be households, schools, or other unit
- Often practical constraints dictate modifications from target population
 - e.g. institutionalized individuals usually excluded
- When population is large, enumeration is not practical, so we survey a portion instead—called a sample
- Plan for selecting elements for sample is called sampling design
More terminology

- **Subpopulation**: defined subset of population (e.g. diabetics)
- **Domain**: partition of sample into mutually exclusive and exhaustive subpopulations based on a variable
 - e.g. gender; domains are male, female
- **Parameter**: characteristic of a population
 - Mean body mass index of NH adults
 - Proportion of NH adults with diagnosed diabetes
- **Statistic**: characteristic of a sample
 - Average BMI among sampled adults
Objectivity in survey design

- Many popular surveys are \textit{biased}; that is, they systematically favor certain outcomes
 - Self-selected samples (Internet polls)
 - Convenience samples (mall surveys)
 - Judgment sampling
- Flaw in above is that samples are not probability-based
- In a \textit{probability sample}, each element has a known nonzero probability of being selected into the sample
Advantages of probability sampling

- Well-defined theoretical framework
- Minimizes (but does not eliminate) bias
- Permits quantification of uncertainty of results
 - Uncertainty arises because different sets of elements in sample will yield different survey results
 - Primary tools are confidence intervals and significance tests
Common sampling designs

- Simple random sample
- Stratified sample
- Systematic sample
- Cluster sample
 - Single-stage
 - Multistage
- Combinations of above
Simple random sample (SRS)

- Need complete list of elements, called the *frame*
- Population contains N elements; want to choose SRS of n elements without replacement
- Suppose $N = 20$ and $n = 4$
 - Label each element 1 to 20
 - Use random number table or generator to select four distinct integers from 1 to 20
 - e.g. 9, 18, 4, 17
 - Elements with corresponding labels enter the sample (order not important)
Definition of SRS

- A sample of \(n \) elements from a finite population is a *simple random sample* (SRS) if every possible set of \(n \) unordered elements is equally likely to be chosen as the sample.
- If \(N = 20 \) and \(n = 4 \), say, then all 4,845 possible sets are equally likely to become the sample.
- If each *element* has an equal probability to enter the sample, the design is called *EPSEM* ("equal probability selection method").
- SRS is EPSEM, but not only EPSEM.
Properties of SRS

• Advantages
 – Conceptually simplest probability sampling method
 – Building block for more complex designs
 – Benchmark for evaluating efficiency of more complex designs

• Disadvantages
 – Need the frame; not always feasible to get it
 – Sample may have wide geographic dispersion
 – If an important subpopulation is small, may not get enough of its elements with an SRS

• SRS is BRFSS design in Guam and U.S. Virgin Islands
Discrete data

• *Nominal* variables place each element in one of several categories with no inherent order
 – Gender (male or female)
 – Ever had colonoscopy (yes, no, refused, unknown)
 – Statistic of interest is proportion or percentage

• *Ordinal* variables place the categories in some meaningful order
 – Health status (excellent, very good, good, fair, poor)
 – Usually interested in proportions and percentages here as well
Continuous data

• *Continuous* variables consist of numbers for which computing a sum or average makes sense
 – Height, weight, BMI, not SSN
• Usually interested in means or totals
• Ratio scale for continuous data: zero is absolute
 – Zero signifies absence of quantity being measured
 – Appropriate comparisons are ratios and differences
• Interval scale for continuous data: zero is relative
 – Zero is an arbitrary point on scale, e.g. temperature in °C or °F
 – Appropriate comparisons are differences
 – Most practical problems focus on differences
• Continuous variables are often collapsed into ordinal categories
 – e.g. BMI (normal, overweight, obese)
Population parameters

Suppose we measure some continuous variable Y on a population with N elements Y_1, Y_2, \ldots, Y_N

$$\mu = \frac{\sum_{i=1}^{N} Y_i}{N}$$

Population mean

$$\sigma^2 = \frac{\sum_{i=1}^{N} (Y_i - \mu)^2}{N - 1}$$

Population variance

Standard deviation = Square root of variance
Sample statistics

From the population we draw a simple random sample of n elements y_1, y_2, \ldots, y_n

\[
\hat{\mu}_{SRS} = \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

Sample mean (average)

\[
\hat{\sigma}_{SRS}^2 = s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n - 1}
\]

Sample variance
Variation of sample averages based on SRS drawn from infinite population

• The sample average \bar{y} is an “unbiased” estimator of the population mean μ
 – Tends to neither overestimate nor underestimate
• The variance of \bar{y} is σ^2/n
 – Variability decreases as sample size increases
• As n gets large, distribution of \bar{y} over all possible samples tends to the “normal” bell curve (Central Limit effect)
Variation of sample averages from a finite population

The variance of the estimator \bar{y} under simple random sampling without replacement is

$$\text{var}_{\text{SRS}}(\bar{y}) = \frac{\sigma^2}{n} \left(1 - \frac{n}{N} \right)$$

n/N is the sampling fraction

$1 - n/N$ is the finite population correction factor (fpc)

The larger n is, the smaller the variation in \bar{y}

If n is small compared to N, fpc is negligible
Standard error of sample average

Substitute sample estimate s for unknown σ in variance formula; take square root

$$se_{SRS}(\bar{y}) = \sqrt{\frac{s^2}{n} \left(1 - \frac{n}{N}\right)}$$

If n is large but still small compared to N, fpc is negligible and the sampling distribution of is approximately normal
Confidence interval

The range of values

$$\bar{y} \pm 1.96 \times se_{SRS}(\bar{y})$$

is a 95% confidence interval for the unknown population mean \(\mu \)

(the values \(\pm 1.96 \) cut off the middle 95% of the standard normal curve)
Sample size selection

- Choose desired length of confidence interval and confidence level (usually 95%)
- Need estimate of population variance; can come from pilot study or guess
- With SRS, solve variance formula for required n

$$\text{var}_{SRS}(\bar{y}) = \frac{\sigma^2}{n} \left(1 - \frac{n}{N} \right)$$
Sample size with nominal data

• Suppose we are estimating a population proportion p and want the estimate to fall within some distance d from p
 – e.g. want to estimate proportion of binge drinkers within ±10 percentage points with 95% confidence
• Previous studies show p about 20%
• Required n is $(1.96/0.1)^2(0.2)(0.8) = 61.46 \approx 62$ (round up)
• Conservative approach assumes $p = 0.5$; this makes required n of 385
• Quick and dirty method; for 95% confidence $n = 1/d^2$
 – e.g. for $d = 0.04$, $n = 625
Stratification

- Designed to increase precision (decrease variation) of estimates
- Using supplementary information, divide population into groups called *strata*
 - Strata are often geographic, but can be based on gender, SES, or other factor
- Within each stratum, elements should be as similar as possible
- For each stratum, determine sample size and take probability sample
 - *Stratified random sampling* takes SRS from each stratum
- Stratification strategies
 - Proportionate
 - Optimum
 - Disproportionate (BRFSS)
 - Balanced
Proportionate stratification

• Draw SRS from each stratum, using the same sampling fraction for all strata
 – Proportionate stratified random sampling is EPSEM
 – Precision of estimates from proportionate stratified sampling will never be worse than that from SRS

• Primary aim is to increase precision, though gain is often modest
Disproportionate stratification

• In *disproportionate* stratification, sampling fraction depends on stratum
• A higher sampling fraction (*oversampling*) is often used in small but important strata to obtain a large enough sample for precise estimation
 – e.g. LBW births in PRAMS
• Primary aim is to achieve small enough standard error to permit analysis of important subpopulations
• Elements must be assigned weights to restore original proportions and thus produce unbiased estimates
• Weighting process tends to increase standard errors compared to proportionate stratification
BRFSS sampling design

- Landlines in 41 states, including NH, are sampled using disproportionate stratified sampling (DSS)
- NH divided into 12 geographic strata
 - Manchester, Nashua, rest of Hillsborough County, other nine counties
- PSU’s are household telephone numbers, obtained from industry database
- Within each geographic stratum, numbers are divided into blocks of 100 and further stratified into ‘high-density’ or ‘medium-density,’ depending on number of listed household numbers in block
 - NH BRFSS thus has 24 strata
BRFSS sampling design (2)

- Numbers are randomly selected and dialed by computer
- High-density strata are sampled at higher fraction for efficiency
- Interviews done by contractor, occasionally monitored by DHHS
- In 2008, rural areas (Coos County) were oversampled slightly
- Total NH sample size about 6000
- Funding issues may affect future sample sizes
Cell phones

- Through 2008, cell phones excluded
- Households with only cell phones now at about 20% in US and still growing
- Research indicates that cell-only households differ from those with landlines, resulting in biased estimates
 - Younger
 - Lower income
- Cell phones sampled in NH starting in 2009
 - Only core questions included
 - Additional questions specific to cell phones for safety
 - Statewide subsample; no geographic strata
- Cell phone sampling about four times as expensive per dialed number
 - By law, cell numbers must be dialed manually
Optimum allocation for stratified sampling

\[n_h \propto \frac{N_h \sigma_h}{\sqrt{C_h}} \]

- **Optimum allocation** divides a fixed total sample size \(n \) among \(H \) strata to achieve minimum standard error of estimated population mean or total.
- Primary aim is to maximize precision of estimates within available resources.
- Sample size in \(h \)th stratum is directly proportional to:
 - Size of stratum population
 - Variation (standard deviation) in stratum
- Sample size in \(h \)th stratum is inversely proportional to square root of unit sampling cost in that stratum.
- Optimal allocation oversamples heterogeneous strata and undersamples more expensive ones.
Estimators of population mean using simple random sampling and stratified random sampling

\[\hat{\mu}_{SRS} = \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n} \]

\[\hat{\mu}_{st} = \sum_{h=1}^{L} \frac{N_h}{N} \bar{y}_h \]

Estimate in stratified sample is weighted mean of stratum averages
Standard errors of estimates of population mean

\[se(\hat{\mu}_{SRS}) = \sqrt{\frac{s^2}{n} \left(1 - \frac{n}{N}\right)} \]

\[se(\hat{\mu}_{st}) = \sqrt{\sum_{h=1}^{L} \left(\frac{N_h}{N}\right)^2 \frac{s_h^2}{n_h} \left(1 - \frac{n_h}{N_h}\right)} \]

Different designs require different estimators!
Special software is needed for complex survey analysis

- The estimators $\hat{\mu}_{SRS}$ and $\hat{\mu}_{st}$ estimate the same quantity: population mean μ
- Standard errors are calculated differently for each design—in fact, the object of stratified sampling is to *reduce* the standard error
- Most statistical software calculates estimates as if the sample is an SRS from an infinite population
 - Basis for development of standard statistical methods: two-sample *t* test, simple and multiple regression, ANOVA, etc.
- In surveys, software must account for the sampling design, otherwise estimates will be incorrect
Cluster sampling

- Used to reduce costs or make sampling easier
 - Sampling from a wide geographic area is expensive
- Population is partitioned into primary sampling units (PSU); each PSU is divided into secondary sampling units (SSU)
- Probability sample of PSU’s is taken
- Each selected PSU is enumerated (single-stage design), or a probability sample of SSU’s is drawn from it (multi-stage design)
A prototype national multistage survey design

- **Stage 1:** Divide the U.S. into 2,007 PSU’s
 - 428 with largest populations automatically sampled
 - Stratified sample of 326 chosen from remaining PSU’s
- **Stage 2:** Divide each sampled PSU into blocks
 - Stratify blocks by demographics; take stratified sample of blocks
- **Stage 3:** Sort housing units in each block into clusters of four nearby units
 - Choose probability sample of clusters for interviews
Properties of cluster sampling

• Key principle in cluster sampling: for lowest standard error, clusters should be similar to each other but internally diverse
 – Opposite of stratification, where strata should be different from each other but similar internally
• Selected clusters need to represent unselected ones
• Cluster sampling almost always increases standard errors
 – Increase depends on variability between clusters and sample size per cluster
 – Cost depends on size and shape of PSU’s
• Primary aim is usually to efficiently sample a widely dispersed area
• NHIS uses a multistage design
Stratification vs. Clustering

- Divide population into internally similar groups
- Draw sample of elements from each group
- Can get smaller standard error than with SRS of same total size
- Goal is to increase precision of estimates of entire population or important strata

- Divide population into internally diverse groups
- Draw sample of groups
- Usually less precise than SRS of same size
- Goal is to increase efficiency by sampling more in selected clusters to offset loss of precision
Issues in surveys

• Undercoverage: Eligible elements missing from frame
 – e.g. households with only cell phones
 – If missing elements differ from included, estimates will be biased
• Overcoverage: Ineligible elements included in frame
 – e.g. phone numbers for business, disconnected numbers
 – Element must be discarded if drawn and found ineligible
 – Main problem is added cost of calling replacement number
Problems in response

• Nonresponse
 – *Unit nonresponse*: Individual chosen for sample can’t be contacted or refuses to cooperate
 – *Item nonresponse*: Respondent refuses to answer some questions; problem with sensitive topics (sexual behavior, drug use)

• Measurement error
 – If question is poorly worded, respondents will misunderstand it
 – Response bias: respondent does not answer truthfully (e.g. post-election polls)
Weighting

• If data is unweighted, all records count the same
 – Assumes all elements likely to be selected (only true if EPSEM)
 – Assumes undercoverage and nonresponse evenly distributed in
 population (usually not true!)
• To adjust for bias, each sampled element is assigned a weight
• BRFSS weights are designed to adjust for
 – Unequal probability of selection
 – Differences in demographics between sample and target
 population
• Weight interpreted as number of population elements represented
 by each sampled element
 – Total of weights = size of population
• After data collection, weights are further adjusted for
 undercoverage and nonresponse (poststratification)
 – Weights of respondents must usually be increased to
 compensate for refusals
General BRFSS weight

\[
\text{FINALWT} = \text{STRWT} \times \frac{1}{NPH} \times \text{NAD} \times \text{POSTSTRAT}
\]

- FINALWT = weight assigned to each respondent for analysis
- STRWT = stratum weight (probability adjustment)
- NPH = number of residential landlines in household
- NAD = number of adults in household
- POSTSTRAT = adjustment for undercoverage and nonresponse; forces sum of weights to population estimate for demographic category
 - Based on gender, race/ethnicity, age group
BRFSS weighting

- For NH 2008 BRFSS, weights calculated separately for Manchester and Nashua
- New ‘raking’ methodology to be introduced in 2010; designed to have sample match population with respect to
 - Age group by gender
 - Detailed race/ethnicity
 - Education
 - Marital status
 - Gender by race/ethnicity
 - Age group by race/ethnicity
 - Geography
Available software for complex sample surveys

• SAS survey procs (SURVEYLOGISTIC, SURVEYFREQ)
• SUDAAN ("SURvey DAta ANalysis")
 – Runs as standalone or add-on to SAS
• SPSS "PASW Complex Samples" module
• Stata "svy" family of commands
• Epi Info
• R package "survey"
• Last two are free; all others commercial
Using survey software

- Generally need to specify which variables contain
 - Weights
 - Strata
 - PSU’s
- Estimates of means and percentages adjusted for weight
- Standard error computed as appropriate for the sample design
 - Most popular method is linear approximation (Taylor method)
- Confidence intervals and hypothesis tests are constructed using appropriate standard errors
- In NH BRFSS, usually need only weights and strata
 - PSU is telephone number
Online resources

• CDC’s BRFSS home page
 – http://www.cdc.gov/brfss/

• NH Health WRQS query system
 – http://nhhealthwrqs.org/

• NH BRFSS reports
 – http://www.dhhs.state.nh.us/DHHS/HSDM/behavioral-risk.htm

• Summary of survey analysis software
 – http://www.hcp.med.harvard.edu/statistics/survey-soft
Bibliography

Questions and comments

Michael Laviolette
Senior Management Analyst
mlaviolette@dhhs.state.nh.us
(603) 271-5688

Susan Knight
BRFSS Coordinator
sknight@dhhs.state.nh.us
(603) 271-4671