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Abstract: Global climate change is an environmental hazard with significant 
public health impacts. High-impact weather events including periods of extreme 
temperature or extreme precipitation are frequently associated with adverse 
effects on human health. This study evaluates the impact of extreme weather 
events on injuries across New Hampshire. A set of five daily extreme weather 
metrics (EWMs) was analyzed: daily maximum temperature ≤32°F (0°C), daily 
maximum temperature ≥90°F (32°C), daily maximum temperature ≥95°F (35°C), 
daily precipitation ≥1”, and daily precipitation ≥2”. Exposure to these EWMs was 
defined by linking the population within 10 miles of nine weather stations 
distributed across the state. Injuries were defined as hospitalizations categorized 
as: all-cause injury, vehicle accidents, accidental falls, accidents due to natural and 
environmental causes (including excessive heat, excessive cold, exposure due to 
weather conditions, lightning, and storms and floods), accidental drowning, and 
carbon monoxide poisoning. The associations between all injury categories and all 
EWMs as well as daily maximum temperature and daily precipitation were 
explored. A quasi-Poisson regression model was used to evaluate the relationship 
between the four strongest exposure–outcome pairs linking maximum 
temperature to all-cause injury-, vehicle accident-, accidental fall-, and heat-related 
hospital visits. Results indicate that daily maximum temperature (>90°F) was most 
strongly associated with heat-related hospital visits and was also associated with 
all-cause injury-related hospital visits. Future work should include further 
analysis of cold weather metrics and incorporate these findings into public health 
planning and response efforts.  

Keywords: cold; flood; heat; injury; weather 
 



Atmosphere 2020, 11, 281 2 of 25 

 

1. Introduction 

According to the National Climate Report, temperature averages and 
temperature extremes are on the rise across the United States (US), with a high 
proportion of the warmest years on record occurring after 2000 [1]. More recently, 
more global high temperature records were broken compared to low temperature 
records [2], and globally, heat waves are becoming more frequent and intense, 
while the frequency and intensity of cold waves is decreasing [3]. The Northeast US 
climate is getting warmer, wetter, and experiencing more extreme weather events 
[4]. The projected shift in extreme weather patterns is expected to lead to more 
premature deaths, hospital admissions, and emergency department visits.  

In addition to changing temperature patterns, average U.S. precipitation is 
increasing, and the Northeast reports the highest rate of increase in precipitation 
compared to all other regions of the country [4]. Extreme precipitation events over 
most of the mid-latitude land masses are highly likely to become more intense and 
more frequent because of the increase in global mean surface temperature [5]. These 
changes to the global climate threaten human health and well-being in several 
ways, including examples such as heat stress from higher temperatures, traumatic 
injury from more intense storms, dislocation due to wildfires and hurricanes, and 
mental stress from disaster events. As the climate continues to change, it is expected 
that existing health threats will intensify and new health threats may emerge. In 
recent history, the Northeast US experienced a number of extreme weather events 
with significant health impacts. For example, in August 2011, parts of Vermont, 
New Hampshire, and New York were affected by immense flooding from Tropical 
Storm Irene, resulting in flood advisories and boil orders.  

The effect of temperature on hospital admissions is well documented across the 
US, such as in California [6,7] and Alabama [8]. Internationally, the relationship 
between extreme temperatures and hospitalizations has been documented in 
Toronto [9], Europe [10], and Scotland [11]. Following the 2003 summer heat wave 
in Europe, several studies focused on the impact of extreme heat on mortality 
[12–14]. Since most studies concerning the impacts of extreme temperature focus on 
deaths, estimates of the overall burden associated with extreme temperatures are 
limited [3]. There are limited studies investigating the impact of extreme weather 
on injuries and especially on injury-related hospital visits. 

It is particularly interesting to evaluate these relationships in New Hampshire, 
a small rural state characterized by a humid continental climate with warm, humid 
summers and cold, snowy winters. In mid-summer, average daily maximum 
temperatures range from 70°F to 85°F (21–30°C). In mid-winter, average daily 
minimum temperatures range from 0°F to 15°F (−17 to −9.5°C). Precipitation is 
evenly distributed throughout the year. The average rainfall is around 40" (1016 
mm) in lower elevations and increases to nearly 100” (2540 mm) at higher 
elevations in the White Mountains. Average snowfall during the winter ranges 
from 60" to 100" (1524 to 2540 mm) in lower elevations and increases to over 200” 
(5080 mm) at higher elevations [1].  
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Since 1895, the average temperature and number of extreme precipitation 
events across the U.S. have increased; however, the temperature rise has not been 
consistent across the country or over time [4]. Similarly, spatial variability in 
extreme weather is observed across New Hampshire. For example, Berlin and 
North Conway report statistically significant decreases in extreme weather related 
to heat; both of these locations also report a statistically significant decrease in their 
highest annual maximum temperatures. Concord reports a statistically significant 
increase in the lowest annual minimum temperature. Keene and North Conway 
report statistically significant increases in extreme precipitation events, with 
increasing trends or no change observed across the rest of the state. Furthermore, 
Concord, Keene, and Lakeport report statistically significant increases in total 
annual precipitation, consistent with increasing trends of heavy downpours 
documented in New Hampshire and across the United States [4]. 

Since most studies concerning the impacts of extreme temperature focus on 
deaths, estimates of the burden of non-fatal health outcomes such as injuries are not 
often reported [3]. The most recent and comprehensive analysis to evaluate the 
association between extreme temperature and injury-related deaths concluded that 
a 2.7°F (1.5°C) increase in temperature would be associated with an estimated 1600 
excess injury deaths across the US [15]. Integrating knowledge of the changing 
climate with an understanding of how those changes impact both morbidity and 
mortality can better inform decisions concerning climate change mitigation and 
adaptation, strategies for building community resilience, and priorities for future 
research.  

This particular study focuses on injury-related hospital visits associated with 
extreme weather events. Extreme weather events are defined as high-impact events 
that vary significantly from typical conditions in either severity or duration, such as 
heat waves or cold waves, or rare events that do not happen very frequently, such 
as droughts or floods [16]. This study is the first of its kind to explore the association 
between extreme weather events and injury-related hospital visits in New 
Hampshire. The objectives of this project were to identify extreme weather metrics 
that are associated with injury-related hospital visits, summarize methods most 
appropriate for evaluating the associations, and quantify the associations across 
New Hampshire.  
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2. Methods  

This study evaluates trends in extreme weather events across New Hampshire 
and links these extreme events to adverse health outcomes. Using data from 
National Oceanic and Atmospheric Administration’s (NOAA’s) National Center for 
Environmental Information (NCEI), 35 years of data (1981–2015) were downloaded 
from nine weather stations across the state (Figure 1). The study areas were defined 
as the 10-mile area surrounding the nine weather stations in the communities of 
Berlin, Colebrook, Concord, Durham, Hanover, Keene, Lakeport, Nashua, and 
North Conway. Daily maximum temperature, daily minimum temperature, and 
daily precipitation were extracted from the Global Historical Climatology Network- 
Daily (GHCN-Daily) dataset [17,18]). These continuous variables were used to 
create five categorical extreme weather metrics (EWMs): daily maximum 
temperature ≥90°F (heat metric 1; HM1), daily maximum temperature ≥95°F (heat 
metric 2; HM2), daily maximum temperature ≤32°F (cold metric 1; CM1), daily 
precipitation ≥1” (precipitation metric 1; PM1), and daily precipitation ≥2” 
(precipitation metric 2; PM2). These metrics represent the number of days over or 
under the threshold of interest. The thresholds were chosen as common cutpoints 
for studying temperature and precipitation extremes. Once these variables were 
identified, time series of the exposures were evaluated for temporal trends. The 
Mann–Kendall test for statistical significance was used to determine whether a 
trend existed, if it was a positive or negative trend, and if it was statistically 
significant. These metrics are referred to as the exposure variables. 
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Figure 1. Study areas include all towns within a 10-mile buffer of the weather stations. 

To measure the health outcomes, hospital data from the New Hampshire 
Limited Use Hospital Discharge Dataset courtesy of New Hampshire Department 
of Health and Human Services were used for the years 2001–2009. The dataset 
includes patient-level information on age, sex, race, ethnicity, residence, year and 
month of admission, year and date of discharge, and diagnosis codes. Cases were 
defined based on the International Classification of Disease 9th Revision (ICD-9). It 
is important to note that the way diagnosis codes are recorded can vary from one 
hospital to the next. Table 1 lists the ICD-9 codes for injuries used in this analysis; 
Table 2 identifies the subcategories of injuries due to natural and environmental 
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causes. Primary, secondary, and any additional diagnosis codes (including 
emergency codes or Ecodes) were used to create these categories. These metrics are 
referred to as the outcome variables. 

 

Table 1. Emergency codes (Ecodes) and ICD-9 codes used to create injury categories. 

Event ICD-9 Code or Ecode 
All-Cause 800-999 

Motor Vehicle Accidents E810-E829; E846-E849 
Accidental Falls E880-E888 

Natural and Environmental E900; E901; E904.3; E907; E908; 991-992 
Accidental Drowning E910 

Carbon Monoxide Poisoning E868 

Table 2. Emergency codes (Ecodes) and ICD-9 codes used to create injury sub-categories related to 
natural or environmental causes. 

Natural Event ICD-9 Code or Ecode 
Cold E900; 991 
Heat E900; 992 

Exposure E904.3 
Lightning E907 

Storms and floods E908 

To define the study area, a 10-mile buffer was created around each of the nine 
weather stations. All towns wholly or partially within this buffer were included in 
the analysis (Table S1, in Appendix A) based on the assumption that the weather 
occurring at the weather station is representative for at least a 10-mile radius 
around that location. Hospital data from these specific towns were extracted and 
merged with the corresponding meteorological data. The study population totaled 
962,274 people, representing about 72% of the total state population. 

Using 2010 population data from the United States Census Bureau, crude injury 
rates were computed in a manner similar to the crude death rates computed by 
Thacker (2008) [19]; they were calculated by dividing the number of 
condition-specific injures by the 2010 US census population and converting the rate 
to per hundred thousand people. These numbers were then divided by nine (the 
number of years included in the study) to determine annual injury rates similar to 
those reported in the most recent New Hampshire Injury Report [20].  

Spearman correlations were calculated between all health outcomes (all-cause 
injury, motor vehicle accidents, accidental falls, accidents due to natural or 
environmental causes, accidental drowning, and CO poisoning) and each of the five 
exposure metrics (HM1, HM2, CM2, PM1, and PM2), daily maximum temperature, 
and daily precipitation (Table 3). The significance of each correlation coefficient was 
based on the associated p-value (p < 0.05). Pairs with the strongest, statistically 
significant correlation were chosen for regression analysis. Additionally, two 
subsets of natural or environmental cause-related hospital visits (cold-related and 
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heat-related) were analyzed by season: for the cool (November – March) and warm 
(May – September) seasons.  

Table 3. Exposure variables and outcome variables used in this analysis. 

Exposures Outcomes 
Daily Maximum Temperature ≥90°F 

(≥32°C) 
(Heat Metric 1; HM1)  

All-Cause Injury (All) 

Daily Maximum Temperature ≥95°F 
(≥35°C)  

(Heat Metric 2; HM2) 
Motor Vehicle Accidents (Veh) 

Daily Maximum Temperature ≤32°F  
(≤0°C) 

(Cold Metric 1; CM1) 
Accidental Falls (Falls) 

Daily Precipitation ≥1”  
(Precipitation Metric 1; PM1) 

Accidents due to Natural or Environmental Causes 
(Environmental) 

Daily Precipitation ≥2”  
(Precipitation Metric 2; PM2) 

Accidental Drowning 

Maximum Temperature (Tmax) CO Poisoning 
Daily Precipitation (Precip) Cold Visits 

 Heat Visits 
 Lightning  
 Exposure 
 Storms and Floods 

To better understand the nature of the association between hospital visits and 
various meteorological parameters, exposure–response relationships were 
examined utilizing regression analysis. Generalized linear models (GLMs) are 
widely used to evaluate the relationship between environmental exposures and 
health outcomes [21–24]. Generalized additive models (GAMs) are also often used 
as a flexible and effective technique for conducting nonlinear regression analyses in 
time-series studies, particularly when evaluating the relationship between 
environmental exposures and health outcomes [25–28]. GAMs have been 
considered vastly preferable for time-series studies of environmental exposures 
because they allow for nonparametric adjustments of nonlinear confounding effects 
such as seasonality, long-term time trends, and weather [26,28–32].  

To assess the robustness of our findings, this study evaluated both types of 
regression models, GLM and GAM, assuming Poisson and Gaussian distributions. 
The model-building process involved evaluating multiple models within the same 
distribution family in a stepwise fashion by adding variables and evaluating the 
goodness-of-fit of each model based on the Akaike information criterion (AIC; 
[33–35]) and the adjusted R-squared value.  

The best-fit model was a GAM with a quasi-Poisson distribution that accounted 
for over-dispersion [36–40]. This approach allows the expected value and variance 
of the outcome variable to have a linear relationship, while the nonlinear 
relationships between the outcome and predictor variables are modeled via 
piecewise functions (or splines) [22]. Based on results from the correlation analysis, 
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continuous maximum temperature was identified as the primary exposure of 
interest. An indicator variable was added to control for day of week (DOW) 
differences between weekday and weekend hospital visits [41–43]. A spline on time 
was also included to control for long-term time trends. In some cases, an additional 
variable was included to control for seasonality [26,27,44]. The model for each 
exposure–outcome pair resembled the following format:  

log(Yt) = β0 + β1Tmax + s(time) + β2DOW + β3Exp + Ɛt (2.1) 

where t refers to the day of the observation; (Yt) denotes the daily outcome count on 
day t; β0 is the intercept (daily outcome count when the predictor is zero); Tmax is 
the maximum temperature on day t; s(time) controls for temporal trends with a 
smoothing effect on time; DOW indicates the day of the week; Exp denotes the 
second exposure variable chosen for that particular model; β1, β2, and β3 are the 
coefficients associated with each predictor; and Ɛt is the residual error. 

To assess the association between each exposure–outcome pair for each study 
area, relative risks were calculated and reported with a 95% confidence interval 
(CI). Relative risks (RR) were expressed as the estimated change in risk of 
hospitalization associated with a 2°F (1°C) change in the predictor (Tmax).  

After obtaining study area-specific results for each analytical model, results 
were then combined to calculate an overall RR for the state of New Hampshire 
using meta-analysis methods with a random-effects model [40,45–49]. The 
combined results were expressed with 95% CI for each exposure–outcome pair. R 
statistical software [50] was used for this analysis: the “mgcv” package was used to 
create the models, and the “rmeta” package was used to conduct the meta-analysis. 
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3. Results 

3.1. Injury Rates–Primary Health Outcomes 

Accidental falls were the most common type of hospital visit across the entire 
time period for all study areas, and accidental drownings were the least common. 
Within the environmental category, visits related to heat and cold were the most 
common. Population totals represent the total population of the study area that is 
explicitly referenced and all towns and cities included within the 10-mile buffer of 
the weather station (Table S1, in Appendix A). Injury rates for all-cause injuries and 
the five primary categories are shown in Table 4.  

Table 4. Annual injury rates per 100,000 people across all study areas. 

Study 
Area 

Population All-Cause 
Injuries 

Vehicle 
Accidents 

Accidental 
Falls 

Environ. Accidental 
Drowning 

CO 
Poisoning 

Berlin 15,230 15,976.5 1873.5 5366.6 35.0 5.1 16.8 
Colebrook 5981 16,671.3 2142.0 5342.8 46.4 0 18.6 
Concord 137,419 9999.7 1398.2 3063.4 23.8 3.1 5.3 

Durham 186,340 11,420.8 1323.9 3486.5 28.2 2.6 5.7 
Hanover 36,982 8565.7 1124.3 2804.4 18.9 2.1 7.5 

Keene 64,661 9325.6 1462.2 2906.8 28.7 3.1 7.2 
Lakeport 89,170 15,126.4 2332.1 4590.7 38.1 6.6 11.3 

Nashua 405,785 10,987.2 1656.1 3269.5 22.8 3.3 7.3 
North 
Conway 

20,706 12,937.7 1589.4 4642.2 31.1 3.8 8.0 

The highest rate of all-cause injuries was 16,671 per 100,000 in Colebrook, and 
the lowest rate was 8566 per 100,000 in Hanover. Among the five primary 
categories, the highest injury rates were for accidental falls, with the highest in 
Berlin (5366 per 100,000), and the three highest reported in the three northernmost 
study areas (North Conway, Berlin, and Colebrook). The second highest injury rates 
were for vehicle accidents, with the highest in Lakeport (2332 per 100,000). The 
third highest injury rates were for natural- and environmental-related injuries, with 
the highest in Colebrook, Lakeport, and Berlin (46.4, 38.1, and 35.0 per 100,000, 
respectively). The fourth highest injury rates were for CO poisoning, with the 
highest in Colebrook and Berlin, the two northernmost study areas (18.6 and 16.8 
per 100,000, respectively). Overall, the lowest injury rates were those associated 
with accidental drowning, with the highest injury rates reported in Lakeport in the 
Lakes Region (6.6 per 100,000), followed by Berlin in the North Country (5.1 per 
100,000). 

3.2. Injury Rates–Secondary (Environmental) Health Outcomes 

Within the natural and environmental category, the highest injury rates were 
associated with extreme temperatures, both hot and cold (Table 5). The highest 
cold-related injury rates were found in the northernmost study areas, Colebrook 
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and Berlin (33.4 and 19.7 per 100,000, respectively), and the lowest were found in 
Hanover, Nashua, and Durham (9.6, 10.6, and 10.9 per 100,000, respectively). The 
highest heat-related injury rates were found in Keene, Durham, Berlin, and 
Lakeport (14.6, 14.3, 13.9, and 13.8 per 100,000), while the lowest were found in 
Hanover, Colebrook, Concord, and North Conway (7.8, 9.3, 9.4, and 9.7 per 100,000, 
respectively). Lakeport reported the highest injury rate for lightning-related visits 
(2.4 per 100,000). Lakeport, Nashua, and North Conway reported the highest injury 
rate for injuries due to unspecified weather (2.9, 2.1, and 2.1 per 100,000, 
respectively). Multiple study areas had no reports of storm- and flood- related visits 
(Berlin, Hanover, Lakeport, and North Conway). Colebrook reported the highest 
storm-related injury rate of 1.9 per 100,000, while Durham and Nashua reported the 
lowest storm-related injury rate of 0.1 per 100,000. 

Table 5. Annual injury rates per 100,000 people for subcategories within the environmental category 
across all study areas. 

Study Area Populatio
n 

Col
d 

Hea
t 

Weather Not 
Specified 

Lightnin
g 

Storms and 
floods 

Berlin 15,230 19.7 13.9 0.7 0.7 0 
Colebrook 5981 33.4 9.3 0 1.9 1.9 
Concord 137,419 11.3 9.4 1.5 1.2 0.3 
Durham 186,340 10.9 14.3 1.4 1.6 0.1 
Hanover 36,982 9.6 7.8 0.3 1.2 0 

Keene 64,661 11 14.6 1.5 1.4 0.2 
Lakeport 89,170 19.1 13.8 2.9 2.4 0 
Nashua 405,785 10.6 12.3 2.1 1 0.1 
North 

Conway 20,706 17.2 9.7 2.1 2.1 0 

3.3. Statistical Relationship between Climate and Health 

Correlation analysis showed that the strongest relationship was between 
all-cause injury-related visits and maximum temperature (Table 6) in six of the nine 
study areas. Seasonal correlations were then tested for heat-related hospital visits in 
the warm season (May – September; MJJAS) and cold-related hospital visits in the 
cool season (November – March; NDJFM). Spearman correlation coefficients were 
computed for every exposure–outcome pair. Seasonal correlations were computed 
separately (Table 7). All-cause injury-related visits and heat-related visits were the 
strongest correlations observed; these were correlated with either maximum 
temperature, HM1, or, in one instance, HM2. Colebrook was the only study area 
that reported a strong correlation in the cool season indicating an inverse 
relationship between cold-related hospital visits and maximum temperatures.  

Table 6. Strongest correlations for each study area with the outcome variable listed first and the 
exposure variable listed second. 

Study Area Strongest 2nd Strongest 3rd Strongest 
Berlin All/Tmax (.193) Veh/Tmax (.135) Heat/HM1 (.134) 

Colebrook Heat/HM1 (.109) All/Tmax (.108) Falls/ Tmax (−.072) 
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Concord All/Tmax (.407) Heat/HM1 (.340) Heat/Tmax (.233)  
Durham Heat/HM1 (.507) All/Tmax (.497) Environmental/HM1 (.335) 
Hanover All/Tmax (.290) Heat/HM1 (.181) Heat/HM2 (.165) 

Keene All/Tmax (.292) Heat/HM1 (.249) Veh/Tmax (.210) 
Lakeport All/Tmax (.440) Heat/HM1 (.368) Heat/Tmax (.226) 
Nashua All/Tmax (.554) Heat/HM1 (.353) Heat/Tmax  (.348) 

North Conway Falls/ Tmax (-.216) Falls/ CM1 (.187) Veh/Tmax (.155) 

Table 7. Strongest seasonal correlations for each study area with the outcome variable listed first and 
the exposure variable listed second (season listed third as Warm or Cool). 

 Strongest 2nd Strongest 
Berlin All/Tmax /Warm (.132) Heat/HM1/Warm (.131) 

Colebrook Heat/HM1/Warm (.119) Cold/Tmax /Cool(−.097) 
Concord Heat/ HM1/Warm (.309) Heat/Tmax /Warm (.279) 
Durham Heat/HM1/Warm (.504) Heat/Tmax /Warm (.400) 
Hanover All/ Tmax /Warm (.207) Heat/HM1/Warm (.197) 

Keene Heat/ HM1/Warm (.225) Heat/Tmax /Warm (.212) 
Lakeport Heat / HM1/Warm (.368) Heat/Tmax /Warm (.286) 
Nashua Heat / Tmax /Warm (.366) Heat/HM1/Warm (.341) 

North Conway Heat / HM1/Warm (.140) Heat/HM2/Warm (.129) 
Examining the correlations for all of the study areas indicates a strong 

relationship between injury-related hospital visits and daily maximum temperature 
(Tmax). Daily maximum temperature was most strongly correlated with four 
outcome categories: all-cause injuries, vehicle accidents, accidental falls, and 
heat-related injuries. All correlations presented were considered statistically 
significant (p < 0.05). The remainder of this study focuses on the association 
between daily maximum temperature and these four outcome categories.  

3.4. Regression Analyses 

The four outcome categories most strongly correlated with daily maximum 
temperature were all-cause injuries, vehicle accidents, accidental falls, and 
heat-related injuries. To determine the appropriate model framework, GAMs and 
GLMs were tested for goodness of fit based on the AIC and adjusted R-squared. 
Since the model fit consistently improved with the introduction of the spline on 
time, the GAM framework was selected for all models. Within the GAM 
framework, Gaussian, Poisson, and quasi-Poisson model families were 
investigated. However, further analysis identified evidence of over-dispersion, so a 
quasi-Poisson model was ultimately chosen.   

The quasi-Poisson GAM model framework was used for each 
exposure–outcome pair. The model was run for each individual study area and the 
association between the exposure and outcome was evaluated based on the relative 
risk with a 95% confidence interval (CI). Finally, the area-specific relative risks for 
each exposure–outcome pair were combined to create an overall relative risk for the 
state of New Hampshire by conducting a meta-analysis using a random-effects 
model, where the random effect was the study area. These combined results were 
also expressed with 95% CI for each exposure–outcome pair. All the models 
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incorporate maximum temperature, a spline on time, day of week, and one 
additional variable chosen individually for each exposure–outcome pairing (Table 
8). 

Table 8. Model frameworks used to evaluate each exposure–outcome pair. 

Exposure–Outcome Model  
All-cause Injury ~ Tmax log(Yt) = β0 + β 1Tmax + s(time) + β2 DOW + β3 Summer + Ɛt 

Vehicle Accidents ~ Tmax log(Yt) = β0 + β 1Tmax + s(time) + β2 DOW + β3 Summer + Ɛt 

Accidental Falls ~ Tmax log(Yt) = β0 + β 1Tmax + s(time) + β2 DOW + β3 EWMcold + Ɛt 

Heat-related Visits ~ Tmax log(Yt) = β0 + β 1Tmax + s(time) + β2 DOW + β3 EWMhot + Ɛt 

3.4.1. All-cause Injury ~ Tmax 

The data suggest a positive relationship between maximum temperature and 
all-cause injuries (Figure 2). This indicates that as the temperature increases, so does 
the risk of all-cause injury. A dummy variable for the warm season (May – 
September; summer) was the additional variable chosen to explain the relationship 
between all-cause injury-related hospital visits and maximum temperature. The 
effect of maximum temperature on all-cause injury-related visits was significant (p 
<0.05) in seven of the nine study areas, excluding two of the northernmost study 
areas: Colebrook and North Conway. The relative risk (RR) of all-cause 
injury-related visits was highest in Keene (1.007 (CI: (1.006, 1.009)) and lowest in 
North Conway, (0.999 (CI: 0.998, 1.002)), although not statistically significant. The 
overall RR for NH, based on the meta-analysis, was 1.005 (CI: 1.003,1.006). 

 
Figure 2. Risk estimates for all-cause injury-related hospital visits associated with a 1°C increase in 
temperature, reported with a 95% CI. 

3.4.2. Vehicle Accidents ~ Tmax 

The data suggest a positive relationship between maximum temperature and 
vehicle accident-related hospital visits (Figure 3). A dummy variable for the warm 
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season (May – September; summer) was the additional variable chosen to explain 
the relationship between vehicle accident-related hospital visits and maximum 
temperature. The effect of maximum temperature on vehicle accident-related 
hospital visits was significant (p < 0.05) in the six most southern study areas (Figure 
3). The RR of vehicle accident-related visits was highest in Keene (1.009 (CI: 1.005, 
1.013)) and lowest in Colebrook (0.998 (CI: 0.988, 1.008)), although not statistically 
significant. The overall RR for NH, based on the meta-analysis, was 1.005 (CI: 1.004, 
1.006). 

 

Figure 3. Risk estimates for hospital visits related to vehicle accidents associated with a 1°C increase 
in temperature, reported with a 95% CI. 
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3.4.3. Accidental Falls ~ Tmax 

The data show an inverse relationship between maximum temperature and 
accidental fall-related injuries (Figure 4). This indicates that as the temperature 
decreases, the risk of falls increases. CM1 (Tmax ≤ 32°F) was the additional variable 
chosen to explain the relationship between accidental fall-related hospital visits and 
maximum temperature. The effect of CM1 on accidental fall-related hospital visits 
was significant in all study areas except Colebrook, while the effect of maximum 
temperature was significant (p < 0.05) in all but the two northernmost study areas of 
Berlin and Colebrook. The RR was strongest in North Conway (0.987 (CI: 0.985, 
0.990)) and weakest in Berlin (0.999 (CI: 0.996, 1.002)), although not statistically 
significant. The overall RR for NH, based on the meta-analysis, was 0.995 (CI: 0.993, 
0.997). 

 

Figure 4. Risk estimates for hospital visits related to accidental falls associated with a 1°C increase in 
temperature, reported with a 95% CI. 

3.4.4. Heat-related Injury ~ Tmax 

The data suggest a positive relationship between maximum temperature and 
heat-related hospital visits (Figure 5). HM1 (Tmax ≥ 90°F) was the additional 
variable chosen to explain the relationship between heat-related hospital visits and 
maximum temperature. The effect of maximum temperature on heat-related 
hospital visits was significant (p < 0.05) in all of the study areas, excluding 
Colebrook (Figure 5). However, HM1 was significant in all study areas except 
Berlin, Hanover, and Keene. The RR was highest in Hanover (1.462 (CI: 1.288, 
1.637)) and lowest in Nashua (1.188 (CI: 1.162, 1.215)). The overall RR for NH, based 
on the meta-analysis, was 1.246 (CI: 1.207, 1.286). 
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Figure 5. Risk estimates for hospital visits related to heat associated with a 1°C increase in 
temperature, reported with a 95% CI. 

4. Discussion 

4.1. Injury Rates 

Overall injury rates were highest for accidental falls, consistent with a 2012 
New Hampshire Injury Report produced by NH DHHS [20]. These findings 
confirm an inverse relationship between maximum temperature and accidental 
fall-related injuries, highlighting the chance to use extreme weather events as a 
timely opportunity to conduct outreach and education to support preventive 
measures. The highest injury rates for accidental falls were reported by the two 
northernmost study areas in Coos County (i.e., Berlin, and Colebrook) and may be 
associated with an older population and/or higher likelihood of outdoor 
occupations. According to the 2013–2017 American Community Survey 5-year 
estimates, approximately 22 percent of Coos County is 65 years and older, 
compared to 16 percent of New Hampshire overall. Accidental falls were followed 
by vehicle accidents, with the highest injury rates reported in Lakeport and may be 
related to a higher likelihood of extreme weather in a more populated yet rural 
area. 

4.2. Exposure Metrics 

Across the state, maximum temperature and hot-weather days ≥90°F (i.e., HM1) 
were the exposure metrics most strongly associated with all-cause injury visits and 
a majority of the other health outcome categories. Cold weather days ≤32°F degrees 
(i.e., CM1) were strongly associated with visits related to vehicle accidents, 
accidental falls, CO poisoning, and natural and environmental injuries. These 
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findings may be able to inform the timing and priority of public notifications, such 
as National Weather Service advisories, watches, and warnings, for extreme 
weather events as well as broader stakeholder planning. 

4.3. Relative Risks 

Of the four exposure–outcome pairs tested, the highest risk was observed 
between maximum temperature and heat-related visits, with an overall RR of 1.246 
(CI: 1.207, 1.286) for all of New Hampshire (Figure 5). This positive association 
indicates that as the maximum temperature increases, the risk of visiting the 
hospital for a heat-related visit also increases. The next highest RR was observed 
between maximum temperature and vehicle accident-related visits (1.005 (CI: 1.004, 
1.006)) and all-cause injury-related visits (1.005 (CI: 1.003, 1.006)). These RRs 
indicate that the risk of all-cause injuries and vehicle accident-related injuries 
increases as the maximum temperature increases. The next strongest RR was 
observed between maximum temperature and accidental falls (0.995 (CI: 0.993, 
0.997)), indicating an inverse relationship between accidental falls and maximum 
temperature.  

All study areas indicated a positive association between maximum temperature 
and all-cause injuries, with the exception of two of the northernmost study areas 
(Colebrook and North Conway), where a null effect was observed. Of the 
remaining stations, the northernmost (Berlin) study area reported the weakest RR 
between maximum temperature and all-cause injuries with an RR of 1.004 (CI: 
1.002, 1.006). In contrast, the strongest, most positive RRs associated with all-cause 
injuries were observed in the three southernmost areas of Keene, Durham, and 
Nashua, with Keene reporting the strongest association with an RR of 1.007 (CI: 
1.006, 1.009). These findings indicate the relevance of geographic location in 
all-cause injury-related hospital visits and support previous findings linking 
anamalously warm temperatures to increased risk of injury-related deaths [15]. 

All study areas indicated a positive association between maximum temperature 
and vehicle accident-related injuries, with the exception of the three northernmost 
study areas (Colebrook, Berlin, and North Conway), where a null effect was 
observed. Keene reported the highest RR for vehicle accident-related injuries with 
an RR of 1.009 (CI: 1.005, 1.013), while Lakeport reported the lowest RR for vehicle 
accident-related injuries with an RR of 1.004 (CI: 1.002, 1.007). Possible explanations 
for the positive association between maximum temperature and vehicle accidents 
include more congested roadways due to people taking vacations during warmer 
months and more teens out of school, leading to more inexperienced drivers on 
roadways. 

All study areas indicated a negative association between maximum 
temperature and accidental fall-related injuries, with the exception of the two 
northernmost study areas (Colebrook and Berlin), where a null effect was observed. 
This suggests that the risk of accidental falls increases as maximum temperature 
decreases. Of the remaining six stations, the northernmost (North Conway) study 
area reported the strongest, most negative RR: 0.987 (CI: 0.985, 0.99). These results 
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may be attributed to more residents being active in the winter due to the abundance 
of winter recreational activities (e.g., alpine and Nordic skiing, backcountry skiing, 
ice skating, sledding, hiking) or to more cases of slips and falls due to snowy and 
icy surfaces. As maximum temperature increases, the risk of accidental falls appears 
to decrease. 

All study areas indicated a positive association between maximum temperature 
and heat-related injuries, with the exception of Colebrook where a heat-related RR 
could not be calculated due to too few data to reliably fit a model. The highest RRs 
associated with heat-related injuries were observed in the three northernmost areas 
of Hanover, North Conway, and Berlin, with Hanover reporting the strongest 
association with an RR of 1.462 (CI: 1.288, 1.637). In contrast, Nashua reported the 
lowest RR of 1.188 (CI: 1.162, 1.215). As Nashua is the southernmost study area and 
the most populated study area, this could indicate more prevalent air conditioning, 
which has been known to counteract the adverse effects of heat [51]. 

4.4. Comparative Studies 

Consistent with a 2012 New Hampshire Injury Report produced by DHHS [20], 
injury rates are highest for accidental falls. It is important to identify accidental falls 
as a target outcome for preventive measures and share these weather-related 
findings with partners working on injury prevention in New Hampshire. 
Continued investigation of heat-related injuries is essential. While most 
heat-related studies focus on mortality, these findings suggest that maximum 
temperature is most strongly associated with heat-related hospital visits and thus 
confirms the risk of heat-related injuries among all individuals [52]. These results 
suggest that heat-related hospital visits will continue to increase under future 
climate scenarios and motivates the need for further research on risk factors of 
heat-related injuries and effective intervention strategies. 

4.5. Limitations 

There are limitations that need to be considered when interpreting the results of 
this study. It has been observed that the effects of temperature on morbidity and 
mortality can persist over several days [22,53–54]. However, as this study serves as 
an exploratory analysis of morbidity associated with meteorological factors for the 
state of New Hampshire, only the same-day temperature was used in order to 
capture short-term effects of temperature. It is recommended that future work 
investigate the lagged effects of temperature on morbidity, by utilizing the 
distributed lag non-linear model framework, which has been widely used in 
investigating the lagged effects of environmental factors on mortality [24,39,55]. 

Using hospital discharge, diagnosis codes add an inherent limitation to the 
study. Differences in the way diagnosis codes are recorded can vary from one 
hospital to the next and could account for variation in counts of specific injuries 
across study areas [56]. For example, a hospital visit due to dehydration in a heat 
wave might only be coded as dehydration, with no mention of heat, and may be 
caused by non-environmental causes such as infection or food poisoning. 
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Additionally, several factors were not controlled for in the analysis related to 
various social, behavioral, or institutional biases that could lead to a higher 
vulnerability, such as adequate access to healthcare. Additional data on the study 
population demographics could be useful to better define vulnerability. 

It is also important to note that when creating the 10-mile buffers around each 
weather station to create the study areas, some of the buffers extend into other 
states, such as Vermont, Maine, or Massachusetts. As a result, the number of 
hospital visits occurring within 10 miles of a weather station does not capture the 
overall impact because this study focuses solely on New Hampshire residents who 
visited a New Hampshire facility and excludes residents from neighboring states 
who might use New Hampshire hospital services as well as New Hampshire 
residents who visited an out-of-state facility.  

5. Conclusions 

The main objectives of this study were to (1) create standard extreme weather 
metrics that can be linked to hospitalization data, (2) determine analysis methods 
most appropriate for identifying the associations between extreme weather metrics 
and injury-related hospitalizations, and (3) evaluate trends across New Hampshire. 
These methods can be applied to other states and jurisdictions with access to similar 
exposure and outcome data. These findings will inform public health professionals 
at the state and local levels working to implement prevention and adaptation 
strategies in the state of New Hampshire, and throughout the region. 

Exploring the four exposure–outcome pairs indicated that maximum 
temperature was most strongly associated with heat-related hospital visits. Based 
on the analysis of climate trends over 35 years, the study areas of Durham and 
Nashua appear to be at significantly higher risk for extreme heat events, as 
compared to the state overall. It is expected that injury-related hospital visits 
associated with extreme heat events will increase in these regions as temperatures 
continue to rise. Recent climate change models for New Hampshire project that the 
number of days with maximum temperatures over 90 and 95 degrees are expected 
to increase significantly in the next few decades [57]. Public health practitioners and 
community planners can expect that as temperatures continue to rise, the risk of 
heat-related hospitalizations will also rise, unless preventative action is taken to 
help the population become more resilient to increasing heat stress. Strategies to 
prevent hospital visits related to extreme weather events should include 
evidence-based outreach and communication to target populations. These 
preventive actions and messages should be geographically relevant, as risk varies 
by location. 

This study adds an important dimension to the growing body of knowledge 
related to the impacts of climate change on health, as there have been no previous 
reports in the state of New Hampshire that estimate the effects of extreme weather 
on injury. This study has several strengths, including the use of robust datasets with 
high spatial and temporal resolution, which were explored using several model 
frameworks and a variety of exposure and outcome categories. 
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Other environmental factors not included in this study have the potential to 
improve model performance. In particular, the addition of air pollution data could 
prove useful as there are already multiple documented studies on the effect of air 
pollution on mortality and morbidity and the potential confounding effect of air 
pollution on extreme weather [27–29,44,58]. In addition, accessing 
quality-controlled hourly meteorological data would also allow for the 
development of exposure variables known to impact human health, such as the 
heat index, wind chill, and freezing rain [59–62]. It is recommended that future 
work investigate the relationship between precipitation and injuries, in particular, 
accidental falls. 

The injury rates and relative risks presented herein can be used as indicators for 
public health action to help communities plan and adapt to the impacts of climate 
change. Public health professionals can equip communities with the knowledge 
and resources to successfully adapt to environmental changes and extreme weather 
events. This study presents a multitude of data and information that can be utilized 
by the State Health Department and local partners to tailor efforts to meet the 
unique needs of communities in New Hampshire with diverse climates and 
demographics. 
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Appendix A 

Table S1. Study Areas with Corresponding 
Towns and Populations. 

  
Study Area Population 

Berlin 15,230 
Cambridge 8 
Dummer 304 
Success 0 
Milan 1337 

Kilkenny 0 
Berlin 10,051 

Gorham 2848 
Randolph 310 
Shelburne 372 

Low and Burbanks Grant 0 
Beans Purchase 0 

Martins Location 0 
Thompson and Meserves Purchase 0 

Colebrook 5981 
Pittsburg 869 

Clarksville 265 
Stewartstown 1004 

Dixville 12 
Colebrook 2301 
Columbia 757 
Millsfield 23 

Ervings Location 0 
Odell 4 

Stratford 746 
Concord 137,419 

Canterbury 2352 
Loudon 5317 
Warner 2833 

Boscawen 3965 
Webster 1872 
Pittsfield 4106 

Chichester 2523 
Concord 42,695 
Epsom 4566 

Hopkinton 5589 
Pembroke 7115 

Bow 7519 
Allenstown 4322 
Dunbarton 2758 

Weare 8785 
Hooksett 13,451 

Goffstown 17,651 
Durham 186,340 

Rochester 29,752 
Barrington 8576 
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Somersworth 11,766 
Dover 29,987 

Rollinsford 2527 
Madbury 1771 

Nottingham 4785 
Lee 4330 

Durham 14,638 
Newington 753 
Portsmouth 21,233 
Newmarket 8936 

Epping 6411 
Greenland 3549 

Rye 5298 
Stratham 7255 

Newfields 1680 
Exeter 14,306 

Brentwood 4486 
North Hampton 4301 

Hanover 36,982 
Lyme 1716 

Hanover 11,260 
Canaan 3909 
Lebanon 13,151 
Enfield 4582 

Plainfield 2364 
Keene 64,661 

Marlow 742 
Alstead 1937 
Walpole 3734 
Stoddard 1232 
Gilsum 813 
Surry 732 

Sullivan 677 
Nelson 729 

Westmoreland 1874 
Keene 23,409 

Roxbury 229 
Harrisville 961 

Chesterfield 3604 
Marlborough 2063 

Dublin 1597 
Swanzey 7230 

Jaffrey 5457 
Troy 2145 

Winchester 4341 
Richmond 1155 
Lakeport 89,170 

Moultonborough 4044 
Tuftonboro 2387 

Center Harbor 1096 
Meredith 6241 

New Hampton 2165 
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Wolfeboro 6269 
Gilford 7126 
Laconia 15,951 
Alton 5250 

Sanbornton 2966 
Belmont 7356 
Franklin 8477 

Gilmanton 3777 
Tilton 3567 

Northfield 4829 
Canterbury 2352 

Loudon 5317 
Nashua 405,785 

Manchester 109,565 
Londonderry 24,129 

Amherst 11,201 
Derry 33,109 

Merrimack 25,494 
Litchfield 8271 
Milford 15,115 
Salem 28,776 

Windham 13,592 
Hudson 24,467 
Nashua 86,494 
Hollis 7684 

Brookline 4991 
Pelham 12,897 

North Conway 20,706 
Chatham 337 

Sargents Purchase 3 
Jackson 816 

Hart's Location 41 
Hadleys Purchase 0 

Bartlett 2788 
Conway 10,115 

Hale's Location 120 
Albany 735 
Eaton 393 

Madison 2502 
Tamworth 2856 

Total Study Population 962,274 
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